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Boolean Satisfiability Problem

The problem of determining if there exists an interpretation that satisfies
a given Boolean formula

Applications:

Bounded Model Checking
Software & Hardware Verification
Automated Theorem Proving
Finite Mathematics
... and a lot of other NP-hard problems

Programs for solving SAT problem are called SAT solvers.



KoSAT - Pure Kotlin CDCL SAT Solver

Most solvers are written with performance in mind. While
mechanical sympathy drastically improves performance, it
tends to make code less readable, and not well-suited for

educational purposes.

e KOSAT is written in a high-level language: Kotlin
e Hackable without much field-specific knowledge
e Runs in different environments (e.g. JVM, JS)

e Compares with modern solvers



Customers

e Educators
o will find KoSAT visualization tool useful for teaching
the CDCL algorithm
e Researchers
o will find KoSAT easy to modify and experiment with
® Engineers

o will find KoSAT easy to use the solver within their
product.



What have been done?

| picked up the project from an internship a year ago. Over
the past two months, numerous features have been
implemented:

e Bounded variable elimination (with lots of extra stuff)
Proof generation

Failed Literal Probing

Equivalent Literal Substitution

Reconstruction Stack

On-the-fly hyper-binary resolution



Use KoSAT

-

public class Example {
public static void main(String[] args) {
CDCL solver = new CDCL();

solver.newClause(-1, 2);
solver.newClause(1l, 2);
solver.newClause(-1, -2);

SolveResult result = solver.solve();
assert result == SolveResult.SAT;

solver.newClause(1l, -2);

result = solver.solve();
assert result == SolveResult.UNSAT;




Performance
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Web Application — Web Interface

KoSAT Solver
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plication — Visualization tool

KOoSAT Visualization
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Web Application — In App Docs
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Web Application — Time Travel

KoSAT Visualization
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Web Application — Try it out!
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https://www.utbot.orq/kosat/



https://www.utbot.org/kosat/




https://github.com/UnitTestBot/kosat

Stepanov Nikolay

@elteammate

2023


https://github.com/UnitTestBot/kosat
mailto:elteammate@gmail.com

