KoSAT: Pure Kotlin CDCL SAT Solver

MENTORS : Dmitry Ivanov & Stepan Kochemazov & Konstantin Chukharev
BY: Nikolay Stepanov

Boolean Satisfiability Problem

The problem of determining if there exists an interpretation that satisfies
a given Boolean formula

Applications:

Bounded Model Checking
Software & Hardware Verification
Automated Theorem Proving
Finite Mathematics
... and a lot of other NP-hard problems

Programs for solving SAT problem are called SAT solvers.

KoSAT - Pure Kotlin CDCL SAT Solver

Most solvers are written with performance in mind. While
mechanical sympathy drastically improves performance, it
tends to make code less readable, and not well-suited for

educational purposes.

e KOSAT is written in a high-level language: Kotlin
e Hackable without much field-specific knowledge
e Runs in different environments (e.g. JVM, JS)

e Compares with modern solvers

Customers

e Educators
o will find KoSAT visualization tool useful for teaching
the CDCL algorithm
e Researchers
o will find KoSAT easy to modify and experiment with
® Engineers

o will find KoSAT easy to use the solver within their
product.

What have been done?

| picked up the project from an internship a year ago. Over
the past two months, numerous features have been
implemented:

e Bounded variable elimination (with lots of extra stuff)
Proof generation

Failed Literal Probing

Equivalent Literal Substitution

Reconstruction Stack

On-the-fly hyper-binary resolution

Use KoSAT

-

public class Example {
public static void main(String[] args) {
CDCL solver = new CDCL();

solver.newClause(-1, 2);
solver.newClause(1l, 2);
solver.newClause(-1, -2);

SolveResult result = solver.solve();
assert result == SolveResult.SAT;

solver.newClause(1l, -2);

result = solver.solve();
assert result == SolveResult.UNSAT;

Performance

/
100009+ meout: 5000] _ 14 d 2
________ Qoo g -5t-
4 S 0. &/
°o® .‘ °
“ 1000 - e o *° o
g Ky /%
‘= P * //
c ' J o)
2 100 ¢ o e 0 o
|<—('/,‘ ' @
§ ® Ve
10 - .:t‘ :
7
Ve []
7
/7
14 »
1 10 100 1000 10000

MiniSat runtime, s

Web Application — Web Interface

KoSAT Solver

Input @

plication — Visualization tool

KOoSAT Visualization
Input @ Solver State @ Trail ©
& Result Decision Level Variables h. PROPAGATE L
p cnf 9 13 UNKNOWN o Unassigned Not fixed Total
-120 g 9 9
130 ¢ LevelO ~
2340
450
460 Clause Database @ fully propagated
5670
=), 118, Irredundant Clauses § Redundant Clauses [
14780
-1-4-7-80 4243234 (s (ws
14790
<1 =4<7 B 0 506 7)) €1 7)) (1 4 7 8
89
B =58 1478 1479 -1-4--9

B 9N §=88=9

Assignment @

al 2 3 4 5 6 i 8 9

s}

[s]

Time Travel @ Conflict Analysis @

Initial state

No conflict!

ANALYZE

UNDO REDO

B &

MINIMIZE LEARN AND BACKTRACK - |

Actions @

ANALYZE ONE

BACK TO THE LANDING PAGE...

Web Application — In App Docs

Assignment @
B

2 3 4 5 6 @ 8
o = +—®— = = oo~

Confli

! & ANAIYZE

Web Application — Time Travel

KoSAT Visualization
Input® Solver State @ Trail @

i Result Decision Level Variables 3 PROPAGATE &
p cnf 9 13 UNKNOWN 2 Unassigned Not fixed Total
g O Levelo ~ B
-130
2340
-450 .
460 Clause Database @
P a0
;741708 5 Iredundant Clauses & Redundant Clauses [& Teveri R
14790 @
890 O Level2 ~

, D@

Assignment @ [s] 00 7 1
Propagated up o here
® ® 6 ® ® ©® 0 ¥0)
+ -+ -+ - 4+ -+ -+ - 4 - -+ - 5
<) J
Time Travel @ Conflict Analysis @ Actions @
Assign variable 2 to true =
trail index: 7 trail index: 6 SEARCH
o
Assign variable 5 to true I V2 © 2

= -3 G

REDO - MINIMIZE LEARN AND BACKTRACK & | BACK TO THE LANDING PAGE.

Web Application — Try it out!

[m] # [m]
E

https://www.utbot.orq/kosat/

https://www.utbot.org/kosat/

https://github.com/UnitTestBot/kosat

Stepanov Nikolay

@elteammate

2023

https://github.com/UnitTestBot/kosat
mailto:elteammate@gmail.com

