
KLEEF Symbolic Execution Engine
Aleksandr Misonizhnik Sergey Morozov Vladislav Kalugin Alexey Babushkin

Yurii Kostyukov Dmitry Mordvinov Dmitry Ivanov

Introduction
KLEE is a well-known LLVM-based open source symbolic
execution engine [6]. It is typically considered in industrial
projects, such as [3, 5, 8], when the user needs a symbolic
execution for C/C++.

KLEE can automatically generate a maximal test coverage
for a specified program. Untested code is a security threat
because it may be abused by a hacker in an unexpected way.
Thus, approaching high test coverage for the production code
may greatly decrease security risks. However, getting high
test coverage is a hard task for humans, who are bad at track-
ing complex dependencies and considering all corner cases.
This is where symbolic execution engines like KLEE come at
hand. A typical KLEE usage scenario is thus as follows. You
provide KLEE with a binary LLVM file of the target project,
and it generates a maximal test coverage for the program
completely automatically. Furthermore, KLEE puts specific
effort to minimize the amount of code in generated tests, so
that they could be more human-readable and maintainable.
That is why KLEE is powerful and widely used.

Can we just take KLEE and use it in the company as is?
The answer is no. The designer of KLEE could not foresee
the obstacles inevitable when working with real-life code.
The key limitations of KLEE are: no support for complex
data structures, like linked lists and trees; poor support of
arrays with statically unknown size; no support for functions
missing from the binary.

And what if you want to use KLEE for a completely differ-
ent task, like static analysis traces verification, i.e., reproduce
error traces obtained from a static analyzer? It may be a far
more important usage scenario for a symbolic execution in
the industry than a test coverage generation because of the
following reason. Today, using a static analyzer in a prod-
uct pipeline becomes a norm. However, their users spend
a lot of effort and resources on investigating static analysis
reports because of a high false positive rate. Software ana-
lyzers are usually advertised to be “blazingly fast” but their
speed comes at a price of the high false positive rate. After
two minutes of static analyzer work, a software engineer
can spend entire weeks tracing its reports — and if we add
up these times we can no more call the entire process “fast”.
Moreover, in most cases manual investigation of these re-
ports ends up concluding that almost all reported traces are
false positives. That is, investigating static analysis results
requires a lot of time and money, and in the end most results
together with all the effort are just thrown away.

So, can you apply KLEE for static analysis traces verifica-
tion as is? The answer is also no.KLEE has no such interfaces:
you cannot pass a set of traces to it, it does not support cus-
tom user annotations, which your static analyzer probably
uses.

That is why our team provides a solution: KLEEF [7] — a
KLEE-based symbolic execution engine fine-tuned for these
industrial applications. In KLEEF we fixed all of the above
KLEE problems. For the test coverage generation task, we
alsomade a user-friendlywrapper forKLEEF namedUnitTest-
Bot C/C++ [4], so KLEEF can be run with no effort via CLion
and VSCode plugins. For the static analysis traces verifica-
tion tasks, we taught KLEEF to investigate static analysis
reports and cut off irreproducible traces. As KLEEF is com-
pletely automatic, expensive time of software engineers is
not wasted on checking irreproducible traces.

KLEEF is fine-tuned for both tasks. Consider, for example,
a Competition on Software Testing Test-Comp, which has
benchmarks for both of these tasks. On these benchmarks
KLEEF gains 2360 points, while Test-Comp 2023 winner
FuSeBMC gains 2220 and original KLEE gains 1750 points.

Let us now introduce successful industrial applications of
KLEEF.

1 Industrial Applications
KLEEF already has a number of successful applications in
the company. First, let us describe the application for static
analysis traces verification and then we will turn to test
coverage generation.

1.1 Static Analysis Traces Verification
Consider the trace on a listing 1, which is a simplified version
of the trace reported by a real static analyzer used by the
company. It was even eye-checked by independent humans
and considered to be a true positive, while it is not.
First event on line 5 is a source: a buffer is assigned to

NULL. A pointer to the buffer is then passed to the function
Exec on line 6. Then a static analyzer makes a mistake: with
the third event it assumes that the function will return on
line 12, while it could not. The reason is that para is a pointer
to a local variable buf, so para itself could not be NULL, as
a condition on line 11 requires. Instead, normal execution
of the function will proceed with allocating memory to the
buffer on line 13. The buffer is then returned on line 7, and
finally line 19 is executed. Following the static analyzer logic,
variable buf is unchanged after the call to Exec, so line 19
leads to null pointer dereference. Indeed, as line 12 cannot be
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actually reached in this trace, the trace report by the static
analyzer is a false positive.

1 typedef struct { unsigned N; } Param;
2 typedef struct { int magic; } St;
3
4 void* Alloc(Param *p) {
5 void *buf = NULL; // event 1
6 Exec(&buf , p); // event 2
7 return buf; // event 4
8 }
9
10 void Exec(void **para , Param *p) {
11 if (para == NULL)
12 return; // event 3
13 *para = alloc (++p->N, sizeof(St));
14 }
15
16 void Init(Param *p) {
17 if (!p) return;
18 St *s = Alloc(p);
19 s->magic = 42; // event 5
20 }

Listing 1. False positive static analysis trace

Recall that this trace was even checked by a (at least one)
human, who also missed the fact that the trace is not feasible.
Moreover, the static analyzer which produced this report
itself uses a variant of symbolic execution, and it still missed
this trace. That is, goofy symbolic execution typically in-
cluded in static analyzers is not enough to filter out even
such simple false positives. Even worse, such symbolic ex-
ecution can give a false sense of safety, while in practice it
may not help filter out nontrivial false positives. It follows
that we still need a precise and robust symbolic execution
engine for verification of static analysis reports. We claim
that KLEEF is one of those. If we run KLEEF on this program
and trace, it successfully handles pointer management and
immediately tells that this trace is a false positive as its third
event cannot be reached.
Because KLEEF is a well-crafted symbolic execution en-

gine fine-tuned specifically for this complex task, it automat-
ically excluded 65% of traces produced by one static analyzer
used by the company.

1.2 Test Coverage Generation
KLEEF is successfully applied for test coverage generation as
a backend behind UnitTestBot C/C++ [4]. KLEEFmanaged
to generate a test coverage for an industrial project with tens
of millions LOC in 40 hours [4].

Let’s study how KLEEF works.

2 How KLEEF Works
KLEEF is a complete overhaul of KLEE [2, 6] symbolic execu-
tion engine. First, let us describe how original KLEE works.

2.1 How Original KLEEWorks
KLEE is a symbolic execution [1] engine. Symbolic execution
is a generalization of testing. A test involves executing a
program on one specific input. For example, if we run a
function CheckPass from the listing 2 with p = 0b1110000
and k = 0b100 we will be lucky to have root access to the
system. Instead of relying on luck, we could explore the
program systematically by running it on symbolic values of
p and k, i.e., introduce variables for their values instead of
using some concrete value, like 0b100.

1 void CheckPass(int p, int k) {
2 p ^= 0b110011;
3 r = k & (p >> k);
4 if (r == 0b100)
5 GrantRootAccess ();
6 else
7 PrintPasswordFail ();
8 }

Listing 2. Simple programwith a potential security violation

This is exactly what a symbolic interpreter like KLEE
would do. It will start interpretation on line 1 with a symbolic
memory mapping {𝑝 ↦→ 𝛼, 𝑘 ↦→ 𝛾}, where 𝛼 and 𝛾 are
variables, symbolic values. The interpreter then executes the
instruction on line 2 and updates the symbolic memory to
{𝑝 ↦→ 𝛼 ⊕ 1100112, 𝑘 ↦→ 𝛾}. Then after line 3 the symbolic
memory becomes
{𝑝 ↦→ 𝛼 ⊕ 1100112, 𝑘 ↦→ 𝛾, 𝑟 ↦→ 𝛾 & ((𝛼 ⊕ 1100112) ≫ 𝛾)}.
When the symbolic interpreter meets a branching instruc-

tion on line 4, unlike a usual concrete program execution,
it goes to both if branches simultaneously by forking the
symbolic memory. Before proceeding to interpretation of
instructions in branches, the interpreter checks their feasi-
bility. It adds to the initially empty symbolic path constraint
the branching condition, which for the line 4 is 𝛾 & ((𝛼 ⊕
1100112) ≫ 𝛾) = 1002, and passes it to a specific logical
solver of such constraints called SMT solver. An SMT solver
checks the formula and if it is satisfiable, returns a model,
e.g., 𝛾 = 1002, 𝛼 = 11100002. A model obtained from the SMT
solver represents a concrete user input which could be used
to get to the specific branch of the program, i.e., a test.
If the path constraint, together with a current condition,

is satisfiable, the symbolic interpreter adds the condition to
the path constraint and forks to the corresponding branch.
If it is not satisfiable, the interpreter does not fork to the cor-
responding branch. The interpreter thus manipulates with
symbolic states, which are essentially a combination of sym-
bolic memory and a path constraint. This method allows
one to systematically investigate all feasible program paths
completely automatically.
The KLEE engine is split into two logical parts. The first

part of the engine is an executor, a symbolic interpreter,
which takes a symbolic state, executes one instruction, and
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produces new states. The second part is a searcher, which
chooses a next symbolic state to be executed according to
some strategy (e.g., BFS, DFS, or random).
Despite looking simple, symbolic execution is really ef-

fective in practice. Yet, real-life programs pose a number of
challenges to a symbolic execution engine, and KLEE is not
an exception. Let us now talk about the limitations we found
while trying to throw industrial code at KLEE and how we
overcame them, ending up with KLEEF we have today.

2.2 KLEE Limitations and Our Enhancements
Firstly, we extend the original KLEE with a number of fea-
tures, which are vital for industrial applications, namely:
support for floating point operations, assembly language in-
sertions, undefined behavior sanitizers, LLVM and C++ type
systems. More complex enhancements are categorized and
described below.

2.2.1 Symbolic Memory. A lot of symbolic execution
engines rely on unrealistic assumptions on possible objects
behind pointers, which makes their application very limited.
For a simple program on the listing 3, which counts bounded
length of the linked list, KLEE cannot find a linked list to
violate the assertion on line 15. However, it will trivially fail
on any linked list of length 2.

1 typedef struct N {int x; struct N *next;} N;
2
3 int len_bound(N *head , int bound) {
4 int len = 0;
5 while (head != 0 && bound > 0) {
6 ++len;
7 --bound;
8 head = head ->next;
9 }
10 return head != 0 ? -1 : len;
11 }
12
13 #define SIZE 2
14 void main(N *node) {
15 assert(len_bound(node , SIZE) < SIZE);
16 }

Listing 3. Example when a symbolic memory in KLEE is
not precise

We enhanced KLEE with support for arbitrary data
structures such as trees and linked lists by reworking the
symbolic memory in KLEE with lazy initialization. It is a
technique for a systematic exploration of all possible objects
in memory to which a pointer could refer. It works as follows.
If we need to dereference a symbolic pointer, we fork the
symbolic state into many, where each one assumes that the
pointer refers to one of possible locations already existing in
the memory. We also fork one extra state, where the pointer
refers to a fresh lazy initialized symbolic object, which is

distinct from all the object from the current symbolic mem-
ory. For the example on the listing 3 it will work as follows
initially in main a pointer has unknown symbolic value, so
it is lazily initialized: {𝑛𝑜𝑑𝑒 ↦→ 𝐿𝐼 (𝑁 )}. Then it is forked on
line 5 while checking head != 0 into two states: {𝑛𝑜𝑑𝑒 ↦→
0, 𝑙𝑒𝑛 ↦→ 0} and {𝑛𝑜𝑑𝑒 ↦→ 𝑁 (𝑥, 𝑎), 𝑙𝑒𝑛 ↦→ 0, 𝑎 ↦→ 𝐿𝐼 (𝑁 )}.
The first state goes until the end of the program without
assertion failure. The second state goes through the while
loop and produces three states:

{𝑛𝑜𝑑𝑒 ↦→ 𝑁 (𝑥, 𝑎), 𝑙𝑒𝑛 ↦→ 1, 𝑎 ↦→ 0}
{𝑛𝑜𝑑𝑒 ↦→ 𝑁 (𝑥, 𝑎), 𝑙𝑒𝑛 ↦→ 1, 𝑎 ↦→ 𝑛𝑜𝑑𝑒}
{𝑛𝑜𝑑𝑒 ↦→ 𝑁 (𝑥, 𝑎), 𝑙𝑒𝑛 ↦→ 1, 𝑎 ↦→ 𝑁 (𝑦,ℎ𝑒𝑎𝑑), ℎ𝑒𝑎𝑑 ↦→ 𝐿𝐼 (𝑁 )}.
The same repeats one more time, and finally we get a state:

{𝑛𝑜𝑑𝑒 ↦→ 𝑁 (𝑥, 𝑎), 𝑙𝑒𝑛 ↦→ 2, 𝑎 ↦→ 𝑁 (𝑦,ℎ𝑒𝑎𝑑), ℎ𝑒𝑎𝑑 ↦→ 0}.
The state will produce a test with the assertion violation
as len_bound returns 𝑙𝑒𝑛 = 2 ≥ 𝑆𝐼𝑍𝐸 = 2. That is how
lazy initialization helps KLEEF handle even complex data
structures in user code.
We further improve lazy initialization with symcrete val-

ues, which help to support dynamically allocated arrays
(arrays with symbolic sizes) and external calls. KLEEF thus
supports buffer overflows that are difficult to detect for
symbolic execution. A symcrete is a pair of symbolic value
and its concrete instance valid in the current context. When
a logical solver receives a query with a symcrete, an equality
between the symbolic and concrete parts of the symcrete are
added to the query. This helps the solver to solve the query, as
a part of the model is already specified in the symcrete. This
mechanism helps KLEEF to support dynamically allocated
arrays by making both array size and address symcretes. The
implementation uses the solver to minimize possible array
size and sparse storage for arrays, so that the entire process
does not blow up.

1 typedef struct {int size; int *ents;} SGL_S;
2
3 SGL_S *init(int size) {
4 SGL_S *sgl = malloc(sizeof(SGL_S));
5 sgl ->size = size;
6 sgl ->ents = calloc(size , sizeof(int));
7 return sgl;
8 }
9
10 int main(int size) {
11 SGL_S *sgl = init(size);
12 if (!sgl)
13 return -1;
14 size ++;
15 for (int i = 0; i < size; i++)
16 sgl ->ents[i] = 2 * i;
17 return size;
18 }

Listing 4. Buffer overflow example
3
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Consider an example with the buffer overflow in the list-
ing 4. A programmer should have used sgl->size instead
of size on line 15, which causes a buffer overflow when
𝑖 = 𝑠𝑖𝑧𝑒 − 1. This example is a simplified version of a code
from one company’s OS, and because of simplifications, it
contains other bugs too. One static analyzer used by the com-
pany, which has a version of symbolic execution inside, finds
simple bugs in this code, yet fails to detect a buffer overflow.
KLEEF finds both simple bugs and the buffer overflow, and
generates a test to reproduce them in nearly 10 milliseconds.

All in all, KLEEFwith symcretes finds 532 defects on Test-
Comp buffer overflow related benchmarks, compared to 393
defects found by KLEEF with lazy initialization only (for
original KLEE the result is 104).

2.2.2 Extern Calls and Environment. Another typical
source of challenges for symbolic execution in general and
original KLEE in particular are external (unspecified in input
code) functions, in particular, working with the environment,
e.g., printing to screen and reading user input.
We added support for IO operations and functions from

parallel processes. We also implemented a number of smart
modes for mocking external functions and global vari-
ables, which differ in balance between analysis speed and
precision.Most importantly, we added support foruser func-
tion annotations, which are used and generated by static
analyzers. Now, if the static analyzer runs on user-annotated
code, KLEEF could check its reports while making the same
assumptions that the original static analyzer made. For ex-
ample, despite the fact that the function alloc on line 13
in the listing 1 is not defined, KLEEF can handle a call to it
in a number of ways. If a user specified an annotation for
it, KLEEF will use it. Otherwise, KLEEF can be run with a
mocking option, in which case it will assume that the func-
tion returns a symbolic value, e.g., a symbolic pointer in case
of alloc.
If an external function is known and can be executed,

KLEEF handles it via a new fuzzing solver based on libAFL.
For each query, it generates a LLVM code that ensures cur-
rent constraints and passes it to the fuzzer. The fuzzing solver
is seamlessly integrated in the symbolic execution process
as extern function arguments and its result are declared as
symcretes. This allows KLEEF to soundly work with known
extern functions on which original KLEE would give up.

2.2.3 Path Explosion. One of the most prominent prob-
lems of symbolic execution is path explosion. That is, loops
and recursion are a source of unbounded growth of the num-
ber of symbolic states. On industrial code, it is life-critical to
systematically deal with this problem because it is unlikely
that the symbolic execution engine will exhaust all obtained
symbolic states in any reasonable amount of time.
In order to deal with this problem, we implemented a

couple of advanced guided searchers optimized for specific
tasks, like trace verification and test coverage generation.

Trace-guided execution strategy is based on calculating
an approximate distance on an interprocedural control flow
graph. It is optimized to choose states reaching trace events
based on a prefix tree of input traces. For example, for the
trace in listing 1 execution will not fork state at line 17 as
we will not event reach the first event in the trace if return
on this line.

Coverage-guided strategy can be used with one of seven
distinct code coverage criteria: two based on the distance
to uncovered instructions, two based on the instructions
covered by the state, two based on depth under branch con-
ditions and one based on recent logical solver query cost.
Most importantly, a searcher of coverage-guided strategy
checks whether a state can contribute to the coverage, and
if it cannot, the searcher kills the state. This optimization
saves us from wasting time on running fruitless states.

One of the outstanding features of KLEEF is bidirectional
symbolic execution (SE). Let us describe it in the example
from the listing 5. The code illustrates a common pattern
in industrial programs: the function performs a complex
initialization and makes some checks afterward. Note also a
typical null pointer dereference trace from the static analyzer
at lines 8 and 12, which is a false positive indeed.

1 typedef struct {
2 int i; int limit; int* status; } Context;
3
4 int RunOSTask(Context *ctx) {
5 while (ctx ->i < ctx ->limit)
6 ComplexCode(ctx ->node[ctx ->i++]);
7 if (ctx ->i == 0) {
8 ctx ->status = NULL; // source
9 ctx ->limit = 0;
10 }
11 if (ctx ->limit != 0)
12 return *(ctx ->status); // sink
13 return -1;
14 }

Listing 5. A program, which is hard for forward symbolic
execution

A code written in such a typical way is difficult for forward
symbolic execution (SE), described in Section 2.1. The main
reason is that forward symbolic execution, which executes
a program in a natural top-down order, will explode while
forking at line 5. Each symbolic state after the while loop will
proceed to the line 8 and then halt at line 11, as the condition
to reach the line 12 cannot be satisfied.

We implemented a backward symbolic execution (SE)
step (symbolic execution which interprets the code in the
reverse order) to overcome this issue. The implementation is
based on executing a code fragment (e.g, lines 8 through 12)
in isolation by lazy initialization of program registers. The
backward step gives us a condition which should be satisfied
to reach the target line. For example, to reach the line 12
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from the line 11, a symbolic state should satisfy 𝑐𝑡𝑥->𝑙𝑖𝑚𝑖𝑡 ≠

0. Due to the assignment on the line 9, in order to reach
the line 12 from the line 8, the state should satisfy 0 ≠ 0,
which is impossible. This fact is saved as a lemma in the
bidirectional mode of the KLEEF, i.e., the engine proves that
the line 12 cannot be reached from the line 8 because these
code sections are conflicting. As a result, KLEEF does not
execute the expensive while loop at all and quickly shows
that the trace is a false positive.
In general, the bidirectional execution works as follows.

First, it performs a smart initialization of points for execution
in isolation, so that later symbolic execution results could
be efficiently reused. On each step, it chooses a next state to
be executed with a divergence-preventing complete strategy
parameterized by a discrete distribution. When a conflict
between some execution points is located, it is minimized
using an unsatisfiable core from the logical solver and then
added to the incremental database. The approach is sound, as
these lemmas are the weakest preconditions of given traces.
These lemmas boost forward symbolic execution by greatly
reducing the number of necessary logical solver calls.

All in all, trace-guided and coverage-guided execution
strategies help to overcome the path explosion issue by nar-
rowing the execution to the points of interest. They optimize
the search when a solution exists, e.g., when a trace is a true
positive. The bidirectional execution also boosts this case,
but its main power is to deal with problems with no solution,
e.g., when a trace is a false positive.

2.2.4 Constraint Solving. Symbolic execution heavily
relies on a logical constraint solving. This is the source of
symbolic execution strength (its precision), but it is also the
source of its weakness. The main weakness of the approach
is that a solver is mostly uncontrollable: you just start it and
wait. In practice, a solver is run with a limited budget of time,
and if time limits, you do not knowwhether a path is feasible.
Thus, you cannot generate a test or show that a trace is a
true positive, so the issue cannot be thoughtlessly ignored.
In KLEEF we leave no stone unturned to deal with the

issue by calling the solver as rarely as possible. We cache
both solver models and unsatisfiability cores, intern sym-
bolic expressions and track constraints during simplification
to detect conflicts. On large projects, this helps KLEEF to re-
duce the number of queries reaching a solver by 99.999976%,
which saves an immeasurable amount of time.

When caching does not help, we still have an ace up our
sleeve. If we are forced to call the solver, we try hard to
call it as smart as possible. For that, we implemented a tree-
incremental solver wrapper which is fine-tuned to handle
the symbolic execution specific queries called. Note that a
symbolic execution investigates a program as a tree, fork-
ing at each branching point. Thus, solver queries are not
random — they come from different vertices of the same
tree. This leads to an observation that most queries share

User Features
Feature FuSeBMC KLEE KLEEF
User Annotations ✘ ✘ ✔
Reproduce a Set of Traces ✘ ✘ ✔

Technical Features
Feature FuSeBMC KLEE KLEEF
Forward SE ✔ ✔ ✔
Backward SE ✘ ✘ ✔
Bidirectional SE ✘ ✘ ✔
Bounded Model Checking ✔ ✘ ✘
Integrated Fuzzer ✔ ✘ ✔
Lazy Initialization ✘ ✘ ✔
Symcretes ✘ ✘ ✔
Arrays with Symbolic Size ✘ ✘ ✔
Function Mocking ✘ ✘ ✔
Using Solver Incrementality ✘ ✘ ✔

Table 1. Comparison of KLEEF with similar tools

long prefixes of path constraints with other queries, which
can be abused by the solver. Our solver wrapper works as a
solver scheduler for a fixed pool of real solvers. It calculates
a distance between a query and all solvers from the pool and
push the query to the solver with the minimum distance.
The optimization relies on the ability of logical solvers to
work as a stack of constraints with push and pop operations,
which helps us not to recompute common prefixes of queries.
This optimization helps us gain 10% more points on the Test-
Comp benchmarks. Now we are working on a custom logical
solver which will support tree incrementality natively and
thus will speed up the constraint solving process even more.

2.3 Comparison of KLEEF with Similar Tools
All features are summarized in table 1. We compare KLEEF
against KLEE symbolic execution engine and FuSeBMC, a
Test-Comp winner, which mixes fuzzing, symbolic execu-
tion, and bounded model checking.

3 How to Use KLEEF
Let us now describe how to use KLEEF for static analysis
traces verification and test coverage generation.

3.1 Static Analysis Traces Verification
Currently, KLEEF for static analysis traces verification is
used via its command-line interface. Yet if your static an-
alyzer is LLVM-based, do not hesitate to contact us, and
we will provide a public API, so that you could link your
static analyzer against KLEEF. We will now focus on KLEEF
command-line interface.
A typical workflow to work with KLEEF and its archi-

tecture are shown in figure 1. In general, you pass LLVM
bitcode, function annotations and a set of error traces to
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Figure 1. KLEEF workflow and architecture

KLEEF and for each trace you get a verdict whether it is a
true or false positive. KLEEF loads the bitcode and injects ap-
propriate mocks for annotated functions and simple mocks
for rest external functions by emitting LLVM bitcode. KLEEF
also builds an execution targets tree from error traces and
starts symbolic execution, running in a loop. The loop starts
by the searcher choosing a most promising symbolic state
from a pool and passing it together with a next instruction
to the executor. It executes the instruction and returns back a
set of new states. The executor could call a chain of caching
and other wrappers around the logical solver. When a state has
reached all the target locations of some trace, KLEEF reports
the trace as a true positive. In the end of the execution (and
sometimes before it) KLEEF reports the rest of the traces as
false positives with appropriate confidence rates.

3.1.1 Building KLEEF. Building KLEEF is as easy as in-
stalling LLVM compiler infrastructure (version from 6 to
14) and running build.sh script1 in a repository root. It
will create a KLEEF binary for you at ∼/klee_build/klee_
build*/bin/klee.

3.1.2 Running KLEEF. We collected the best options to
call KLEEF here2 in a style of Visual Studio Code options. We
came up with these options from industrial applications of
KLEEF for static analysis verification, so you can use them

1
https://github.com/UnitTestBot/klee/blob/main/build.sh

2
https://github.com/UnitTestBot/klee/blob/main/configs/options.json

as is. Yet it could be meaningful to tune these options for
your domain. The most important options are as follows.

An option bytecodeFilePath should be replaced with a
LLVM binary .bc or .bca file you want to analyze.

An option --max-time is a time limit, after which KLEEF
stops symbolic execution and makes some final postprocess-
ing steps. If you want to guarantee that KLEEF will halt after
exactly this amount of time, you can also pass a --watchdog
option.
An option --max-forks says how many times symbolic

execution is allowed to fork states on branching instructions.
If you decrease this option, KLEEF would halt faster, yet it
may not be able to show that a trace is a true positive. The
same goes for an option --max-cycles, which controls how
many times symbolic execution is allowed to enter the same
loop.
An option --analysis-reproduce specifies a path to a

file with a set of traces in SARIF format3. You can look for
examples of such files across KLEEF tests, like this4. Each
file contains a set of traces, and each trace has an identifier,
a defect type, and a sequence of events, which should be
reached to reproduce the trace.
An option --annotations specifies a path to a file with

functions annotations in the format specified here5. You can

3
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html

4
https://github.com/UnitTestBot/klee/blob/main/test/Industry/test.c.sarif

5
https://github.com/UnitTestBot/klee/discussions/92#

discussioncomment-6242065

6

https://github.com/UnitTestBot/klee/blob/main/build.sh
https://github.com/UnitTestBot/klee/blob/main/configs/options.json
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://github.com/UnitTestBot/klee/blob/main/test/Industry/test.c.sarif
https://github.com/UnitTestBot/klee/discussions/92#discussioncomment-6242065
https://github.com/UnitTestBot/klee/discussions/92#discussioncomment-6242065
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translate annotations your static analyzer uses to our format
so that KLEEF can verify your traces faithfully.

3.1.3 Reading KLEEF Output. For each trace KLEEF re-
ports that it is either true positive, false positive or mal-
formed.

If KLEEF says that a trace is a true positive, we are pretty
sure it really is, so you can show it to a user.

If KLEEF says that a trace is a false positive, it also gives
a confidence rate in percents, i.e., a confidence of the engine
in the verdict. To understand the confidence, imagine the
following situation. You run a symbolic execution engine,
and it does not halt within a give time limit. You get nothing
from this run, in fact, it wasted computing resources for
nothing. Now, if you run KLEEF, you will get a confidence
rate, which shows, how far it is from an answer to your
query. If it is almost 100%, you can increase a time budget for
KLEEF a little, and eventually you could get a 100% result,
either the trace is verified as true positive or false positive.
If the confidence is too low, KLEEF will also communicate
an advice which option should be increase. For example, if
a trace requires some loop to be traversed ten times, if you
run KLEEF with --max-cycles=1, it would be not enough.
In this situation, KLEEF will report that a trace is a false
positive with the low confidence rate and with advice to
increase --max-cycles.
You can use a confidence rate in a number of ways. You

can show a user only traces with a confidence rate lower
than some limit, e.g., 50%. You can also show all traces sorted
by confidence rate, so that traces which are more probable
to contain real bugs will be investigated by the user at first.
You can also increase some limits for KLEEF, like time, so
that it could confirm more true positives across your traces
or increase its confidence.
Finally, if KLEEF says that a trace with a certain identi-

fier is malformed, it means that KLEEF was not able to
construct a sequence of LLVM blocks for your trace. There
could be one of the following problems. It could be that a
LLVM binary is not built with debug information, in which
case you should rebuild it. It could be that some functions
are occasionally missing from a LLVM binary, in which case
you should double-check that the binary is built properly. It
could be that a location of some event is wrong, e.g., has a
wrong line or column.

3.2 Test Coverage Generation
A favorable way to use KLEEF for test coverage generation
is via UnitTestBot C/C++, and you can start here6. It can
be used as a Visual Studio Code or CLion plugin, and even
as a GitHub action on your C/C++ project.

6
https://github.com/UnitTestBot/UTBotCpp/wiki/Intro

Conclusion
We presented KLEEF — a complete overhaul of the KLEE
symbolic execution engine, fine-tuned for a robust analysis of
industrial C/C++ code. If you want to implement a symbolic
execution for either static analysis traces verification or test
coverage generation, you will need an enormous amount of
work to make it work well. Worse yet, as most problems you
will face have a systematic scientific nature, you will likely
end up with a goofy heuristic-based symbolic engine. It will
waste a lot of resources and miss most false positives, leaving
your users unsatisfied. Good news for you is that you can
reduce a false positive rate of your static analyzer by simply
delegating all the pain to the battle-tested KLEEF symbolic
execution engine. KLEEF proved itself both on billions lines
of the company code by greatly reducing a false positive
rate of one static analyzer, and academic benchmarks of
Test-Comp competition, outperforming its winners.
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