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Problem

Common problem:

recursion in code exponentially increases the number of execution paths

Even harder problem:

recursion in data structures exponentially increases execution states
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Goal

Goal: to infer invariants of programs with complex data structures
Requirements:

▶ Fully automatic

▶ Support data structures

▶ Return invariant

▶ Support SMT theory combination
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Users

Software engineers who develop

▶ symbolic execution based tools

▶ static analyzers

▶ programs with complex data structures

▶ smart contracts
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User story

Program

Specification

User tool
(e.g. test
covarage
generator)

Our tool

Safe inductive
invariant

Counter example
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Proposed solution

Tool Spacer Racer Eldarica HoIce RCHC RInGen Our

Fully automatic ✔ ✘ ✔ ✔ ✔ ✔ ✔

Supports
data structures

✘ ✔ ✔/✘ ✘ ✔ ✔ ✔

Returns invariant ✔ ✘ ✔ ✔ ✔ ✔ ✔

Supports SMT theory
combination

✔ ✔ ✔ ✔ ✘ ✘ ✔

Idea: approximate data structures with simple schema
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Results

Benchmark:
▶ recursive programs with complex data structures,

▶ i.e., lists, trees, regular expressions, ASTs, maps, states, queues etc.

Eldarica

▶ inferred invariants: 13

▶ found counterexamples: 18

Our solution

▶ inferred invariants: 24

▶ found counterexamples: 7

https://github.com/ndreuu/adt-solver
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The theorem prover being used has bugs, which we have reported
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Future work

▶ Investigate methods to help SMT solvers to handle quantifiers

▶ Improve counterexample rate

▶ Submit to CHC-COMP competition
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Fin

https://github.com/ndreuu/adt-solver

Andrey Oleynikov
a.oleyn1kov@outlook.com
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