
Automatic Inference of Recursive Invariants Based on
Catamorphisms

Oleynikov Andrey
MENTOR: Y. O. Kostyukov

August 30, 2023



Problem

Common problem:

recursion in code exponentially increases the number of execution paths

Even harder problem:

recursion in data structures exponentially increases execution states

1 / 9



Problem

State and Path Explosion

. . .✕. . .. . . ✕ ✕ . . .

Fail
2 / 9



Problem

State and Path Explosion

. . .✕. . .. . . ✕ ✕ . . .

Fail
2 / 9



Problem

State and Path Explosion

. . .✕. . .. . . ✕ ✕ . . .

Fail
2 / 9



Problem

State and Path Explosion

. . .✕. . .. . . ✕ ✕ . . .

Fail
2 / 9



Problem

State and Path Explosion

. . .✕. . .. . . ✕ ✕ . . .

Fail

Tests have not been genera
ted!

2 / 9



Problem

State and Path Explosion

. . .✕. . .. . . ✕ ✕ . . .

Fail

Invariant Invariant

2 / 9



Problem

State and Path Explosion

. . .✕. . .. . . ✕ ✕ . . .

Fail

Invariant Invariant✕

2 / 9



Problem

State and Path Explosion

. . .✕. . .. . . ✕ ✕ . . .

Fail

Invariant Invariant✕

✕
✕

✕

2 / 9



Problem

State and Path Explosion

. . .✕. . .. . . ✕ ✕ . . .

Fail

Invariant Invariant✕

✕
✕

✕

2 / 9



Problem

State and Path Explosion

. . .✕. . .. . . ✕ ✕ . . .

Fail

Invariant Invariant✕

✕
✕

✕

Tests have been generated!

2 / 9



Goal

Goal: to infer invariants of programs with complex data structures
Requirements:

▶ Fully automatic

▶ Support data structures

▶ Return invariant

▶ Support SMT theory combination

3 / 9



Users

Software engineers who develop

▶ symbolic execution based tools

▶ static analyzers

▶ programs with complex data structures

▶ smart contracts

4 / 9



User story

Program

Specification

User tool
(e.g. test
covarage
generator)

Our tool

Safe inductive
invariant

Counter example

Test coverage

5 / 9



User story

Program

Specification

User tool
(e.g. test
covarage
generator)

Our tool

Safe inductive
invariant

Counter example

Test coverage

5 / 9



User story

Program

Specification

User tool
(e.g. test
covarage
generator)

Our tool

Safe inductive
invariant

Counter example

Test coverage

5 / 9



User story

Program

Specification

User tool
(e.g. test
covarage
generator)

Our tool

Safe inductive
invariant

Counter example

Test coverage

5 / 9



Proposed solution

Tool Spacer Racer Eldarica HoIce RCHC RInGen Our

Fully automatic ✔ ✘ ✔ ✔ ✔ ✔ ✔

Supports
data structures

✘ ✔ ✔/✘ ✘ ✔ ✔ ✔

Returns invariant ✔ ✘ ✔ ✔ ✔ ✔ ✔

Supports SMT theory
combination

✔ ✔ ✔ ✔ ✘ ✘ ✔

Idea: approximate data structures with simple schema

6 / 9



Proposed solution

Tool Spacer Racer Eldarica HoIce RCHC RInGen Our

Fully automatic ✔ ✘ ✔ ✔ ✔ ✔ ✔

Supports
data structures

✘ ✔ ✔/✘ ✘ ✔ ✔ ✔

Returns invariant ✔ ✘ ✔ ✔ ✔ ✔ ✔

Supports SMT theory
combination

✔ ✔ ✔ ✔ ✘ ✘ ✔

Idea: approximate data structures with simple schema

6 / 9



Results

Benchmark:
▶ recursive programs with complex data structures,

▶ i.e., lists, trees, regular expressions, ASTs, maps, states, queues etc.

Eldarica

▶ inferred invariants: 13

▶ found counterexamples: 18

Our solution

▶ inferred invariants: 24

▶ found counterexamples: 7

https://github.com/ndreuu/adt-solver

7 / 9

https://github.com/ndreuu/adt-solver


Results

Benchmark:
▶ recursive programs with complex data structures,

▶ i.e., lists, trees, regular expressions, ASTs, maps, states, queues etc.

Eldarica

▶ inferred invariants: 13

▶ found counterexamples: 18

Our solution

▶ inferred invariants: 24

▶ found counterexamples: 7

https://github.com/ndreuu/adt-solver

The theorem prover being used has bugs, which we have reported

7 / 9

https://github.com/ndreuu/adt-solver


Future work

▶ Investigate methods to help SMT solvers to handle quantifiers

▶ Improve counterexample rate

▶ Submit to CHC-COMP competition

8 / 9



Fin

https://github.com/ndreuu/adt-solver

Andrey Oleynikov
a.oleyn1kov@outlook.com

9 / 9

https://github.com/ndreuu/adt-solver
mailto:a.oleyn1kov@outlook.com

